Service Manual Minuiteman

For the
KS32R

32" Rider Sweeper

For
Training
Trouble Shooting
Adjustments

Contents

1.0 General Description
2.0 Technical Data
3.0 Design and Mechanics
3.1 Operation
3.2 Cylindrical Broom and Side Broom
3.3 Dust Hopper und Dust filter
3.4 Steering
3.5 Brake
3.6 Electric Drive
4.0 Electric
4.1 Electrical description
4.2 Electric Box
4.3 Drive Controller
4.4 LDS
4.5 Charger
5.0 Service
6.0 Notes
7.0 Wiring Diagrams

Page 3
Page 4
Page 8
Page 8
Page 9
Page 12
Page 13
Page 14
Page 16
Page 21
Page 22
Page 26
Page 28
Page 32
Page 35
Page 38
Page 42
Page 43

1.0 General Description

Note: Machine is shown with optional left side broom installed

2.0 Technical Data

		KS32R
Dimensions and weights		
Length with Side Broom	mm	1282
Width without Side Broom	mm	818
Width with 1 Side Broom (Standard)	mm	908
Width with 2 Side Brooms (Optional)	mm	998
Hight bove Steering Column	mm	1237
Turning Radius	mm	1580
Basic Weight (incl. Battery)	kg	285
Total Weight	kg	450

Drive Speed forward	Km / h	6
Wheel Rotation Speed on max. Speed	$1 / \mathrm{min}$	127
Drive Speed reverse	Km / h	4
Wheel Rotation Speed on max. Speed	$1 / \mathrm{min}$	85
Sweeping Width without / with Side Broom	mm	$670 / 890$
Sweeping Width with 2 Side Brooms	mm	1110
Teoretical. sweeping Performance with 1/2 Side Brooms	$\mathrm{m}^{2} / \mathrm{h}$	$5340 / 6660$
Climbing Ability	$\%$	$16(1 / \mathrm{min})$

2.0 Technical Data

Filter area	m^{2}	1,4
Plate Filter	Stk.	1
Flow Rate	$\mathrm{m}^{3} / \mathrm{h}$	306
Low Pressure	Pa	126

Cylindrical Broom		
Length / Diameter	mm	$670 / 250$
Wear Limit Diameter	mm	200
Rotation Speed	$1 / \mathrm{min}$	500
Sweeping Mark	mm	$45+/-10$
Number of Bristle Array (2 Half-Shell)	Stk.	each 10
Standart Bristles		K901

left / right / rear	mm	$2 / 2 / 2$
front close / open	mm	$0 / 40$

2.0 Technical Data

Diameter	mm	400
Bristle Length	mm	150
Wear Limit / Length of Bristle	mm	70
Rotation Speed	$1 / \mathrm{min}$	100
Standart Bristles		PES (Polyethersulfone)

Hopper Volume	I	2×25

Front Wheel (Drive)	Amer	Adiprene red
Rear Wheels		Rubber Blend
Spec. Wheel Pressure Front / Rear I. / Rear r.	$\mathrm{N} / \mathrm{mm}^{2}$	$54 / 57 / 48$

2.0 Technical Data

Battery	V / Ah	2×12 Volt 105 AH Gel
Total Power	KW	1,5
Power Drive Motor	W	$600(60 \mathrm{~min})$
Current Consumption Driving Plane Area / 16\% Climbing	A	$7 / 60$
Power Sweeping Drive	W	600
Current Consumption Sweeper and Dust Extraction	A	16
Current Consumption Sweeper + Side Br.. + Dust Extr.	A	16,5
TotalCurrent Consumption on Sweeping	A	25

Noise Pressure Level according DIN IEC 60335-2-72	$\mathrm{dB}(\mathrm{A})$	66
Sound Power Level according DIN IEC 60335-2-72	$\mathrm{dB}(\mathrm{A})$	82

3.0 Design and Mechanics

Excellence Meets Clean

3.1 Operation

The travel pedal is right of the steering column. The brake pedal, and the park brake lock, is left. Also the pedal for the oversize material flap is on the left side, close to the seat console.

3.2 Cylindrical and Side Broom

3.2 Cylindrical

Note: The main broom does not lower for the operation: the broom is always in the down position contacting the floor. (also in transport).

The brush material is K901.
To change the brush you have to remove both dust hoppers.

After this you could reach through the rear helical tunnel.

There you loose the nuts of one cylindrical half shell.

Then you have to "maneuver"-out the shell.
After this turn the broom about 180°.
Then you could remove the second half shell.
The assembly follows the opposite sequence.

3.2 Side Broom

The material is PES. The changing is much easier as you only have to loose a hexagonal nut.

Bowden cable to lift / lower the side broom

On the underside of the broom block there are hexagonal nuts and washers for mounting the side broom.

3.3 Dust Hopper and Dust Filter

Under this cap is the dust fan
 release device

Manual shaker device

Dust hopper

To reach the fan and panel filter, you will have to open the seat cover and then remove the cap.

3.4 Steering

The steering link operates directly to the carrier plate where the electric drive is mounted.

To adjust the tapered roller bearings follow this instructions:

Tighten nut to 60Nm
Than loose nut after it -Turning steering wheel about 90° to the left and right.

Tighten nut to 5 Nm
If the cotter pin doesn't fit, turn the nut until it fits.

Mount the cotter pin .

3.5 Brake

3.5 Brake

- The following steps are required to assemble the bowden cable and to adjust the brake:
- -The cable coating of the bowden cable remains in the machine
- -Contrive the cable into the cable coating on one side and fix it to the clamping nut (overlap for approx. 10mm)
- -Guide cable around the deflection roller and contrive it to the second part of the cable coating
- -Tight pull-out the cable and fix it to the other clamping nut.
- -Over lap the end (approx. 10 mm) and cut the rest.
- -The wheel have to turn barley at open brake, if not adjust the length of the bowden cable.
- -For this turn the length adjusting screw (on R.H. side: close to the dust fan) by loosening the lock nut and turning of the other one. Therefore a 90° bend SW17 wrench is helpful.

3.6 Electric Drive

The travel drive assembly is complete. It includes the wheel.

3.6 Front Wheel Drive - Changing Wheel

Steps to be executed for changing the front drive wheel

1.

Dismount drive unit at the separation point between the wheel support plates

3.

Remove holder between the plate and the brush flange

2.

Loosen fixing screws of plate and holder

4.

Remove the lateral sealing plug

3.6 Front Wheel Drive - Changing Wheel

5.

Pull brush flange off the motor axle

7.

Loosen the
8 wheel bolts

6.

Remove brush flange

8.

Pull off the tire

3.6 Front Wheel Drive - Changing Wheel

10.

Insert new tyre and tighten wheel bolts crosswise and hand-tight

11.

Tighten wheel bolts crosswise with 16Nm

12.

Check carbon brushes for wearing and smooth running in the brush holder

3.6 Front Wheel Drive - Changing Wheel

14.

Screw fastening plate
Place brush flange and drive in straight onto the motor shaft

15.

Insert sealing plug into borehole

16.

Then maintenance is completed.

Drive unit may be mounted to the machine.

4.0 Electric

4.1 The electrical circuit of the KS32R has some logical operations that are controlled by the LDS board, the drive controller and relays. Here is a brief description of the logic circuit:

Loading / Operating conditions: When the power plug of the on-board charger G2 is connected to the 120 V AC net the internal relay E will open. Through this the voltage supply to the LDS A2 X1/PIN1 from the key switch S1 PIN3 is interrupted.

Then the LDS is switched off. The LED's to indicate charging are powered by the charger. If the plug is disconnected and the key switch is turned ON, the LDS has power, i.e. it's in function.

4.1 Electric

LDS function If at the LDS A2 X1/PIN1 voltage is applied, the output X1/PIN8 is energized. This activates the K2 relay.

The K2 relay switches power on the contacts PIN4 to PIN2. Through this, the current path to the input X1/PIN4 at the LDS will be closed.

This feedback is evaluated by the LDS A2. If it does not work the error code 1(all the LEDs of the battery indicator will flash) is shown. At the same time the internal relay A will switch the output X1/PIN12 to X1/PIN10.

Now, a current path from the key switch S1 PIN2 to LDS A2 X1/PIN11, to the temperature switch $\mathrm{S} / 1$, connected in driving the motor M 1 and to the drive control $\mathbf{A 1}$ X1/PIN11 is closed. It is used to evaluate the motor temperature and the signal path when the TSG will stop driving.

The supply of pull-up coil of the relay $\mathbf{K} 2$ lead to the supply voltage of the drive controller; path F3 PIN2 => K2 PIN30 to PIN2 => A1 X1/PIN15.

4.1 Electric

Sweeping function The double push button S3 is used to switch ON/OFF the sweeping (main broom motor M2).

It is supplied, with power on the path A2 X1/PIN10 (when LDS is active) => temperature switch M2 YE1 to YE2 => S3 PIN2 and PIN5. Now, if the switch S3 is pressed (turn on), the relay K3B is energized on the pull-up coil. At the same time PIN6 and PIN9 are energized.

This is, independent of the switching state of the coil at relay K3B, to energize the relay K1. When the switch S3 is released the PIN6 of relay K3B generates a catch (as the coil falls off slower than the push button).

The switched relay K1 provides the central motor M2 through the path F2 PIN2 => K1 KP/1 to KN/1 => M2 RD. By pressing again the button S3 (turn off) the power supply of the relay K3 PIN9 to PIN6 is interrupted.

Therefore, also K1 drops. This leads to switching off the sweeping function. The activation of the temperature switch (M2) has the same effect.

4.1 Electric

Excellence Meets Clean

The drive controller A1 also monitors the seat contact switch.

Driving If the drive controller A1 X1/PIN15 has correct power supply it is active. Additionally, if the plug X1/PIN11 (temperature switch drive motor o.k.) is supplied and the main power supply BP1 is energized works the output X1/PIN14 and the potentiometer output X1/PIN1.

By actuating the accelerator pedal, the neutral switch S6 is switched through BK to BU. Through this, the direction switch $\mathbf{S 2}$ is supplied with power. Furthermore, the seat contact switch $\mathbf{S 5}$ is supplied with electricity. If it is closed (seated operator), the input can be read at X1/PIN5. This is necessary for the internal release of driving. When choosing a direction of travel is either a switched input from PIN5 to PIN4 or PIN6. Thus the voltage to the driving control A1 X1/PIN12 or X1/PIN13 is lead back. This signal is used internally to determine direction.

The actual excitation of the driving motor M1 is carried out by the processing the drive potentiometer signal. On drive potentiometer R1 GN is the 12V output voltage of the drive controller A1 X1/PIN1. At YE is a ground signal from the drive controller A1 X1/PIN3. The voltage signal at the RD drive potentiometer output, depending on the displacement is 0 V (\min.) to 12 V (max). It is read at X1/PIN2 into the drive controller and processed by characteristic

4.1 Electric

Monitoring of seat contact switch If seat contact switch S5 is interrupted during operation there is no signal anymore to X1/PIN5 of Controller A1. This leads to an internal program procedure that will change, after approx. 2.5s, X1/PIN9 from ground (Normal) to voltage (SWITCHING STATUS). If the seat contact switch is closed within 2.5 s , the normal operation continues.

In the NORMAL state, the coil of the relay K3A is energized as X1/PIN8 is supplied with +12 V . This ensures that the input X1/PIN6 is without a signal. And further more a ground connection to the coil of relay K1 is present (central motor M2 can be supplied with power). The SWITCHING STATUS of the output X1/PIN9 causes the coil of t

The relay K3A is energized from both sides. Therefore, the switch drops. This leads to two processes 1) Input X1/PIN6 changes from open signal to ground. This is processed by the drive controller A1 so that it switches off the driving. 2) The ground connection to the coil of the relay $\mathbf{K 1}$ is interrupted (no signal). Therefore, K1 drops down and stops completely the sweeping function (sweeping and vacuuming) This can only be released through the key switch S1 ON-OFF.

4.2 Electric Box

The Electric box is located behind a bolted panel above the hopper. Here are all important components of the electrical system, with the exception of the control switch and the drive potentiometer. The KS32R is equipped with an onboard charger. It is also mounted in the electric box. The attached power cord is in a open chamber, on the right hand side of the machine.
There is also the shaker lever to clean the panel filter.

4.2 Electric Box

4.3 Drive Controller

The drive controller is not programmable.
The seat switch is wired in the drive controller circuit.
This prevents accidental operation, when not sitting in the seat.

4.3 Drive Controller

Excellence Meets Clean

The drive potentiometer R1 receives from drive controller A1 a 12 V reference voltage supply. It has internally a fixed resistor of 1.7 k Ohm and is connected in series with a variable resistor $0-4 \mathrm{k} \mathrm{Ohm}$. A voltage between 0 V and 12 V is given back to the control (between X1/PIN2 and X1/PIN3). This leads, by internal characteristics, to a corresponding activation of the traction motor M1. When you replace the drive controller or potentiometer, adjustment is not required. When mounting the potentiometer, it is important to ensure that, at the very moment when the neutral switch $\mathbf{S 6}$ is operated, there still is a gap of 0.5-1.5 mm between potentiometer guide and slide shoe.

Slide shoe of Neutral switch

Neutral switch S6

4.3 Drive Controller Error Codes

Excelfence Meets Clean

Error/Alarm Code	Code Description	Trouble Shooting
Alarm A1 / 1 FORWARD switch ON	At key-on travel direction switch S2 is closed to X1/PIN12	Attend starting sequence / check wires and plugs
Alarm A2 / 2 REVERS switch ON	At key-on travel direction switch S2 is closed to X1/PIN13	Attend starting sequence / check wires and plugs
Alarm A3 / 3 Potentiometer error	Failure of potentiometer; Cable break or not plausible value	Check wires of potentiometer
Alarm A4 / 4 Potentiometer not in neutral	At key-on neutral switch S6 closed to X1/PIN5	Attend starting sequence / check wires and plugs
Alarm A5 / 5 High temperature	Protection against over heating	wait a few minutes / if necessary check motor about overload
Alarm A6 / 6 Power level	Damage at the power amplifier of the controller	Change controller
Alarm A7 / 7 High current	Short in motor circuit	Check motor wiring; if o.k. and there is still alarm => change controller.
Alarm A8 / 8 Fuse / Relay	Power fuse or Internal relay is damaged	Check power fuse or change controller
Alarm A9 / 9 Low voltage	Low voltage	Check battery charge condition

4.3 Drive Controller Error Codes

Error/Alarm Code	Code Description	Trouble Shooting
Alarm A10 / 10 High voltage	High voltage	Battery voltage is above 45V; Check the batteries
Alarm A11 / 11 Overload current	Protection against overload; Current >70A	Check motor current
Alarm A12 / 12 Locking device ON	Seat contact switch > 2,5s open	Check seat contact switch and wires. Reset of this alarm is with key switch ON-OFF
Alarm A13 / 13 Key switch off	No function of key switch	Check connection and wires of key switch
Alarm A14 / 14 E2PROM breakdown	E2PROM breakdown, internal controller failure	Change controller.

4.4 LDS (Low Discharge Signal)

The LDS is mounted underneath the dash board.
The DIP switches allows the battery type to be changed.
This changes the voltage that the machine shuts down at, when the batteries are discharged.
NOTE: Setting the dip switches incorrectly may damage batteries.

4.4 LDS Settings

Dip Switch 1	Dip Switch 2	Dip Switch 3	Dip Switch 4	Battery Type
				OFF
OFF	OFF	OFF	OF	Crown without Offset
ON	OFF	OFF	OFF	Crown with Offset
OFF	ON	OFF	OFF	GiS, foreign
ON	ON	OFF	OFF	GiS
OFF	OFF	ON	OFF	PzS foreign
ON	OFF	ON	OFF	PzS
OFF	ON	ON	OFF	GiV
ON	ON	ON	OFF	PzV
OFF	OFF	OFF	ON	Hoppeke AGM
ON	OFF	OFF	ON	empty
OFF	ON	OFF	ON	empty
ON	ON	OFF	ON	empty
OFF	OFF	ON	ON	empty
ON	OFF	ON	ON	empty
OFF	ON	ON	ON	empty

-If all Dip-switches are ON, then the wired detection is used.
-The LDS could show via the LED's (LDS; bottom row) the following error messages:
Error 1) All LED's flashing (Red and $3 \times$ Green) means that PIN 4 of
LDS has no return signal => Check output PIN8; Check relay K2; Check fuse F3;
Check wiring and plugs at the relevant components
Error 2) Only the Green LED's flashing => at the moment not active.
-Note: Crown with offset = longer run time. Crown without offset = longer battery life.

4.4 Battery Types

Excellence Meets Clean

Battery types defined
-GiS and GiV are flat plate batteries,
-PzS and PzV are tube plate batteries

- GiV and PzV are sealed, absolutely maintenance-free gel batteries
- GiS and PzS are sealed, low-maintenance AGM batteries with liquid electrolyte.

AGM batteries are wrapping electrodes with fiberglass separators.

The KS32R comes standard with a built in charger. The charger is integrated into the sweepers electrical system and can not be removed. The charger is delivered with the characteristic curve for the standard battery (currently the only version). It is possible to modify these characteristics. For this, the charger must be released from the holder, because the programming button is located on the bottom side. The state of charge is displayed on the LDS (top row). Here also error messages may be shown.

To program a different charge characteristic follow these steps:

1. Plug charger into AC outlet-switch off charger by pressing programming button for 2-3s.
2. Press button again for more then 10 s $=>$ Charger changes to programming mode and shows the current characteristic
3. To change characteristic press button $<1 \mathrm{~s}=>$ Characteristic changes to one position higher
4. To save a characteristic press button $>5 \mathrm{~s}=>$ new characteristic is programmed
5. To leave the programming menu press the button for $2-4 \mathrm{~s}$.

4.5 Charger Settings

Programm (Dio LED's blinken)	0	1	2	3	4 9000	5	6 Wie 2	7 Wie 2
BatterieSpannung	24 V	24V	12V	24 V	24 V	12V	12 V	12V
Kapazitat	$\begin{aligned} & \text { 70Ah- } \\ & 75 \mathrm{Ah} \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \mathrm{Ah}- \\ & 36 \mathrm{Ah} \end{aligned}$	$\begin{aligned} & 70 \mathrm{Ah}- \\ & 75 \mathrm{Ah} \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \mathrm{Ah}- \\ & 75 \mathrm{Ah} \\ & \hline \end{aligned}$	$\begin{aligned} & 25 A h- \\ & 36 \mathrm{Ah} \end{aligned}$	$\begin{aligned} & 70 \mathrm{Ah}- \\ & 75 \mathrm{Ah} \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \mathrm{Ah-} \\ & 75 \mathrm{Ah} \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \mathrm{Ah}- \\ & 75 \mathrm{Ah} \\ & \hline \end{aligned}$
Ladevorschrift	$\begin{gathered} \text { Exide } \\ \text { GiV } \end{gathered}$	$\begin{aligned} & \text { Exide } \\ & \text { GiV } \end{aligned}$	$\begin{aligned} & \text { Exide } \\ & \text { GiV } \end{aligned}$	$\begin{aligned} & \hline 1 E 8 \\ & \text { IEB } \end{aligned}$	$\begin{aligned} & \hline 1 E 8 \\ & \text { IEB } \end{aligned}$	$\begin{aligned} & \text { IEB } \\ & \text { IEB } \end{aligned}$	$\begin{aligned} & \text { Exide } \\ & \text { GiV } \end{aligned}$	Exide GiV
Kennlinie	TUIOU	TUOU	TUOU	TUOU	TणOU	TUOU	TUOU	TUOU
Ladezelt	13h-14 h	10h-11h	13h-14h	10h-14h	8h-14h	10h-14h	13h-14h	13h-14h
rasptiacune I_{1} U_{1}	$\begin{array}{r} 9.0 \mathrm{~A} \\ 28.2 \mathrm{~V} \\ \hline \end{array}$	4.5A 28.2 V	$\begin{aligned} & 9.0 \mathrm{~A} \\ & 14.1 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 9.0 \mathrm{~A} \\ \hline \stackrel{\ominus}{\circ} \\ \hline 28.6 \mathrm{~V} \end{array}$	4.5A $28,6 \mathrm{~V}$	$\begin{aligned} & 9.0 \mathrm{~A} \\ & 14.3 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 8.0 \mathrm{~A} \\ 14.1 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{aligned} & 8.0 \mathrm{~A} \\ & 14.1 \mathrm{~V} \\ & \hline \end{aligned}$
$\begin{gathered} \hline \mathrm{t}_{\text {ie } \max } \mathrm{t}_{\mathrm{HLnax}} \\ \mathrm{I}_{\mathrm{IUm}} \\ \hline \end{gathered}$	$\begin{aligned} & 9 \mathrm{~h} \\ & 12 \mathrm{~h} \end{aligned}$	$\begin{gathered} 9 \mathrm{~h} \\ 12 \mathrm{~h} \end{gathered}$	$\begin{gathered} 9 h \\ 12 h \end{gathered}$	$\begin{gathered} 9 \mathrm{~h} \\ 12 \mathrm{~h} \\ \mathrm{di} / \mathrm{dt} \end{gathered}$	$\begin{gathered} 9 \mathrm{~h} \\ 12 \mathrm{~h} \\ \mathrm{di} / \mathrm{dt} \end{gathered}$	$\begin{gathered} \hline 9 \mathrm{~h} \\ 12 \mathrm{~h} \end{gathered}$	$\begin{aligned} & \hline 9 \mathrm{~h} \\ & 12 \mathrm{~h} \end{aligned}$	$\begin{gathered} 9 \mathrm{~h} \\ 12 \mathrm{~h} \end{gathered}$
$\begin{array}{r} \text { isomladung } \\ \mathrm{I}_{2} \\ \mathrm{U}_{2} \end{array}$	$\begin{array}{r} 1,1 \mathrm{~A} \\ 33,6 \mathrm{~V} \\ \hline \end{array}$	$\begin{gathered} 0.4 \mathrm{~A} \\ 33.6 \mathrm{~V} \end{gathered}$	$\begin{gathered} 1.1 \mathrm{~A} \\ 16.8 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} 0,9 \mathrm{~A}-2,8 \mathrm{~A} \\ 33,6 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} 0.3 \mathrm{~A}-1.0 \mathrm{~A} \\ 33.6 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} 0.9 \mathrm{~A}-2,8 \mathrm{~A} \\ 16.8 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} 1.1 \mathrm{~A} \\ 16.8 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} 1.1 \mathrm{~A} \\ 16.8 \mathrm{~V} \end{gathered}$
$t_{\text {NL }}$	$\begin{gathered} \text { 4h max } \\ \mathrm{LF}=1,05-1,06 \end{gathered}$	$\begin{gathered} 4 \mathrm{~h} \max \\ \mathrm{LF}=1,05-1,06 \end{gathered}$	$\begin{gathered} \text { 4h max } \\ \text { LF }=1,05-1,06 \end{gathered}$	6h max du/dt	6h max du/dt	6 h max du/dt	$\begin{gathered} \text { 4h max } \\ \text { LF }=1,05-1,06 \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{~h} \max \\ \mathrm{LF}=1,05-1,06 \end{gathered}$
radeende	1,1A	0.4A	1.1A	1.1A	0.4A	1.1A	1.1A	1.1A
U_{3}	27.6V	27.6 V	13.8 V	27.6 V	27.6 V	13.8 V	13.8 V	13.8 V
$t_{\text {Ane }}$	\cdots	\cdots	\cdots	-*.	-	-..	...	-
t_{EL}	unbegrenzt							

\uparrow Default setting for factory supplied gel batteries

- Indicates LED is on. $\bigcirc=$ Indicates LED is off.

4.5 Charger Status Indicator

	LCD- LED- Indicator				
operating status	+ 8		[- $\begin{aligned} & 8 \\ & 8 \\ & 0\end{aligned}$	ए\% 8	
Main charging $\mathrm{U}_{\text {bat }} \leqslant 1,9 \mathrm{~V} / \mathrm{Z}$	X				
Main charging		X			
Backup charging			X		
Conservation charging				X	
operating status during malfunction*	$\square \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}$			$\square \quad \square$	malfunction number
Battery malfunction	X				$1 . .2$
Time malfunction		X			$3 . .4$
Control malfunction			\times		11.. 13
Temporature malfunction				X	6

Note: If there is a error, the LEDs flash once per second

Description Of Errors

Description Of Errors	
1	Battery missing; Connected reverse poled; Cell voltage < 1,25V
2	Cell voltage $>2,4 \mathrm{~V}$
3	Longer than 30min. cell voltage < 1,5V
4	Phase of constant current takes too long
6	Temperature in charger too high (clean charger vents if needed)
11	Limit value of control is exceeded
12	Limit value of control is exceeded
13	Limit value of control is exceeded

5.0 Recommended Maintenance

Weekly Maintenance

Activity	Interval	
	daily	weekly
Check battery charge; charge battery, if necessary	$\mathbf{0}$	$\mathbf{0}$
Clean broom space of cylindrical broom	$\mathbf{0}$	$\mathbf{0}$
Clean panel air filter using shaking device	$\mathbf{0}$	$\mathbf{0}$
Empty the dirt hopper	$\mathbf{0}$	$\mathbf{0}$
Check side broom for signs of wear and damage; change, if necessary		$\mathbf{0}$
Check cylindrical broom for signs of wear and damage; change, if necessary		$\mathbf{0}$
Check sweeping pattern of side broom; adjust, if necessary		$\mathbf{0}$
Check sweeping pattern of cylindrical broom; adjust, if necessary	$\mathbf{0}$	
Check seals in broom space of cylindrical broom for signs of wear and damage; change, if necessary		$\mathbf{0}$
Check seals on dirt hoppers; change, if necessary		$\mathbf{0}$
Check seals of dust vacuum; change, if necessary		$\mathbf{0}$
Cleaning the vehicle		

5.0 Recommended Maintenance
 Every 125 Hours

Activity	Interval
	every 125 operating hours
Check battery and charger necessary	\mathbf{o}
Check cylindrical broom for signs of wear and damage; change, if necessary	\mathbf{o}
Check sweeping pattern of side broom; adjust, if necessary	\mathbf{o}
Check sweeping pattern of cylindrical broom; adjust, if necessary	\mathbf{o}
Check seals in broom space of cylindrical broom for signs of wear and damage; change, if necessary	\mathbf{o}
Check seals of dirt hoppers; change, if necessary	\mathbf{o}
Check seals of dust vacuum; change, if necessary	\mathbf{o}
Check the function of the parking brake and service brake	\mathbf{o}
Check dust vacuum; clean or change panel air filter, if necessary	\mathbf{o}
Check the electric system (lighting, fuses, relays and control lamps)	\mathbf{o}
Check the visual appearance of the vehicle	\mathbf{o}
Test drive and function test	\mathbf{o}

5.0 Recommended Maintenance

Every 250 Hours

Activity	Interval
	every 250 operating hours
All maintenance work in accordance with Hako system maintenance I	$\mathbf{0}$
Check fan belt; adjust belt tension or change fan belt, if necessary	$\mathbf{0}$
Check the visual appearance of the vehicle	$\mathbf{0}$
Test drive and function test of all safety-related components	$\mathbf{0}$

5.0 Recommended Maintenance

Every 500 Hours

Activity	Interval
	every 500 operating hours
All maintenance work in accordance with Hako system	\mathbf{o}
Check electrical systems (operating panel, on-board charger, battery poles, cables, seat contact switch, lighting, fuses, relays and control lamps)	\mathbf{o}
Check the carbon brushes of the drive motor and central motor for ease of movement and signs of wear; change, if necessary	\mathbf{o}
Check the retaining screws; retighten, if necessary	
Check actuating lever for folding apron, cylindrical broom, side broom, brake pedal, parking brake and accelerator; spray with oil to ease movement. if necessary	\mathbf{o}
Check brake linings and Bowden cables in the brake system for signs of wear; change, if necessary	\mathbf{o}
Check side broom for signs of wear and damage; change, if necessary	\mathbf{o}
Check cylindrical broom for signs of wear and damage; change, if necessary	\mathbf{o}
Test drive and function test of all safety-related components	\mathbf{o}

6.0 Notes

